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Abstract

The use of coupled-mode theory explains qualitatively
and quantitatively the kinetic formation of the complex modes,
which are explicitly shown to be the result of mode-coupling
between a forward wave and a backward wave in a shielded
Iosslessnonreciprocal finline. The unique properties of the eom-
plexmoctes in the nonreciprocal fine[ine are discussed in detail for
the first time. Based on the coupled-mode theory, the amount of
coupling between the forward wave and the backward wave can
be related to the complex propagation constants of the rx)mplex
modes, of which the data are obtained by the full-wave spectral-
domain approach.

Introduction

In many millimeter-wave and microwave integrated
circuits there is a need for nonreciprocal deviees such as phase
shifters, directional ecmplefs, isolators, and filters. To design these
deviees sueeessfully, one needs to know the propagation charac-
teristics of the guided-wave structures incorporated in the nonre-
ciprocal devices. In addition to the extensive dominant-mode
results published by Geshiro and Itoh[l], it is also important to
investigate the higher-order modes excited in conjunction with
any discontinuities in the nonreciprocal tinline deviees[2]. In the
nonreciprocal finlines the higher-order modes including the
complex modes, to authors’ knowledge, have not yet been re-
ported or fully discussed. The excitation of the complex modes, if
they exist, needs to be considered when analyzing the waveguide
discontinuity problem[3].

The aim of this paper, however, is not limited by pre-
senting the data of the fundamental and higher-order modes
including the complex modes for a nonreciprocal tinline shown in
Fig.1, which cxmsiatsof the multi-dielectric stratified Iayersand an
additional ferrite substrate magnetized transversdy in the x direc-
tion. Sinoe the. finline under study is nonreciprocal, the modal
solutions include the so-called forward wave and the backward
wave[l], The distinction of the forward wave and the backward
wave also holds for all the higher-order modes of the nonrecipro-
cal finline. This implies that a deeper physical picture of the
formation of the complex modes is possible based on the time-
harmonic full-wave modal solutions. Such a distinction between

the forward wave and the backward wave allows us to invoke the
coupled-mode theory [4] to explain the kinetic mechanism of
forming the complex modes in the nonreciprocal finline.

The first step toward the use of the coupled-mode
theory is the extensive investigation of a particular nonreciprocal
finline under moderate and weak DC magnetic fields (Ho’s)
applied on the ferrite substrate in the transverse xdkection of
Fig.1. Atthough only two particular ease studies are analyzed
here, it is believed that the particular examples depict the general
dispersion characteristics of the nonreciprocal quasi-planar
guided-wave structures. Following the mode charts, obtained by
the spectraldomain approach(SDA) with improved aecuracy[5],
of the nonreciprocal fintine under various applied DC magnetic
fields, atypical example of cxmtradirectional eouplingof a forward
propagating wave and a backward propagating wave with various
degrees of ecmpling illustrates the fact that a pair of complex
modes existwhen the phase constants of the twocom?udirectional

propagating modes are nedy egual. These contradirctional
waves essentially correspond to thejiorword wave and the back-
ward wave in the nonreciprocal finline. Then, turning to the mode

charts presented earlier and focusing on the regions where the
complex modes are formed by a forward wave and a bockward
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Fig.1 Cross-sectionalgeomet~ of a unilateral fineline integrated on
the stratified layerscontaining a ferrite substratemagnetizedin x-
direction. The structural and material parametersare: 11=3.556mm,
d=lmm, h=lmm, 14=1.556mm, b=3.556mm, sl=~=l.628mm,

w= O.3mm, ●lc=Eqr=l, cti=c~r=12.5, 4nMs=4900G, and

Ho=500(30)Oe.
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wave, the coupled-mode theory yields the dispersion charac[eris-
ties of the forward wave and the backward wave as well as the
complex modes. The values of these propagation constants as
predicted by the coupled-mode theory are in excellent ag-

reement with those obtained by the full-wave SDA. Thus, for the
first time, the values of the cnmplex modes obtained by the full-
wave approach in a nonreciprocal finline can be directly related to
the amount of coupling between aforward wave and a backward

wave.

The Nonreciprocal Finline Model

and

The Method of Analysis

Fig.1 shows the nonreciprocal tinline model investi-
gated in this paper. The tlnline consists of the multi-dielectric
layers and a ferrite substrate magnetized in the x-direction by
adjusting the DC magnetic field I-10across the ferrite substrate.
The tlnline cross-section is subdivided into various regions desig-
nated by the corresponding material parameters. Afl the data
presented herein have the same structural parameters and mate-
rial parameters, which are indicated in Fig. 1,except that only the
applied DC magnetic tieids(Ho’s) are different. One is for the
moderate amount of applied DC magnetic field on the ferrite
substrate, and the other is relatively weak. By doing so, the general
dispersion characteristics of the nonreciprocal finline can be ob-
tained and compared by the two casestudies covering fairly broad
range of magnetization.

The theoretical data obtained by the spectral-domain
approach are validated first by having very good agreement with
those reported in Fig. 2 of [ lJ The number of the spectral terms
used in obtaining the full-wave solutions for the dispersion char-
acteristics of the nonreciprocal finline is 2000 and the set of basis
functions employed here has degree of three. Thus a 12 by 12
characteristics matrix equation is derived for solving the propaga-
tion constant accurately[5]. The time-harmonic cjtit factor and
the propagating e-JPfactor are assumed, where y= f?-jd. When
Ho and Ms are both positive, one obtains the solutions for either
the positive-going propagating (forward) wave with C >0 and a =
Oor the negative-going propagating (backward) wave with /3 c O
and a = O.When Ho and Ms are both negative, all the signsof the
above-mentioned modal solutions are reversed. Note that the
convention for the counterpropagating modes holds for both
dominant and higher-order modes.

needs to find the modal solutions when both Ho and Ms are
positive. Under this condition, the modal solutions for the nor-
malized propagation constants can be either designated asFl, F2,

...... etc., of which the leading letter F stands for the forward

positive-going propagating wave, or Bl, B2, ...... etc., of which the
leading letter B means the backward negative-going propagating
wave.

In both plots, clearly, the complex modes exist and occur
when a pair of a forward wave and a backward wave start to
become evanescent modes (below cut-off). In the partictrlar case
studies, however, every pair of the forward wave and the back-
ward wave can never become evanescent modes. Instead, they
form a pair of the complex modes at a frequency point where the
group velocities are zero.
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Dispersion Characteristics of a Nonreciprocal Finline

Figs.2(a) and (b) plot the dispersion characteristics of the
nonreciprocal tlnline of Flg.1 with moderate and weak applied
DC magnetic fields on the ferrite substrate, respectively. Follow-
ing the discussions mentioned in the previous section, one only

Fig.2 Dispersioncharacteristics(mode charts) of Flg.1. The solid lima
and dot lines are for the real and imaginary parts of the normalized
propagation constants, respectively. (a) Ho=5000e, (b) Ho=300e.
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Since very similar dispersion characteristics are obtained
in Flg.2(a) and Fig.2(b), it is plausible to consider the above-men-

tioned findings hold for general shielded nonreciprocal quasi-
planar guided-wave structures.

Coupled-Mode Theory

and

The Complex Modes

Following the same terminologies used in [4], let the
propagation constants of thehypthedcal uncoupled modesbc~P
and fl~, respectively, and the coupling factor of these two modes 1s
K. The propagation constants of the resultant coupled modes fll

and /3j on the continuously coupled condition can be shown to be

4 = (Bp+flq)fl+ J [(BP-QE]2A K2 (1)

/92 = (BP+Q2 - J [(Bp-/3q)/2]’t K2 (2)

When BPand ~~ are in the same direction, the ‘+’ sign
applies. When @Pand ~~are contradirectional, the ‘-’ sign applies.
obviously, BPand fl~ need to be contradireetional to become the

complex modes. F1g.3 illustrates this observation for the two
contradirectional modes 8P and fl~ with various values of the
coupling factor K. The resultant coupled-mode solutions, fll and

192,do establish regions where the complex modes exist. The
higher the value of K is, the wider of the complex modes region is
established and the bigger the absolute value of the
imagina~(attenuated) part of the corresponding complex propa-
gation constants.

Note that, in Fig.3,~P and $ are the forward wave and the

“?backward wave, respectively. Sigm leant coupling among the two
hypothetical uncoupled modes, flP and~~, occurs when the propa-
gation constants of the two modes before coupling are nearly

equal. They form the complex modes, which are in complex
conjugate pairs, Of more importance is the fact that the plots of
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Flg.3The complex modes formed by two contradirectional modes as
predicled by the coupled-mode theory. The real parts of normalized
propagation constant are plotted with solid lines. The imaginary parts
are plotted with dot lines.
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the resultant coupled modes, fll and #z, bear very close resem-
blance to those of Figs.2(a) and (b) in terms of the physical

appearan~ of the modal solutions for the dispersion characteris-
tics of the nonreciprocal finline. This can be attributed to the
following three observations among these plots.

First, in the complex modes region, they all have complex
propagation constants in complex-conjugate pairs. Second, all the
complex modes, regardless of whether they are obtained by the
full-wave SDAanalyses or by the couple-mode theory, start at the
frequency points where the group velocities are zero. Third, the
complex modes can be established by a pair of a forward propa-
gating wave and a backward propagating wave. These observa-
tions encourage us to investigate the full-wave modaf solutions of
Figs.2(a) and (b) quantitatively by the coupled~mode theory in
the next section.

Application of The Coupled-Mode Theory

To The FuI1.Wave SDA Modal Solutions of

A Nonreciprocal Finline

To finalize the legitimacy of applying the coupled-mode
theory to explain the formation of the complex modes in the
nonreciprocal finline, one needs the quantitative evidence in
addition to the qualitative discussions presented in the previous
section. Since an actual shielded waveguide has infinite number of
modes, these modes are likely to couple each other. Thus we
frame only part of the region for modes F6 and B6 in Fig.2(a). In
this region one may consider that these two modes interact more
strongly than other higher or lower-order modes including the
complex modes. Therefore the simple coupled-mode theory may
apply.

Inside the framed region of Fig.2(a), there are three types
of modes, namely, the forward propagating wave, the backward
propagating wave, and the complex modes. Using the data inside
the framed region, we can obtain the approximate solutions forflP
and ~~.This is done first by solving BPand ~~ in terms of & and 82
in (1) and (2). Then plugging into the new expressions using the
data inside the framed region of Fig.2(a) with a proper choice for
the value of K, one obtains the curved .scrIutionsfor /?Pand fl~.
Finally we linearize those curved solutions by the apphcation of
the least-square error algorithm and the results are the two
straight dash-dot lines illustrated in Flg.4.

In Ftg.4, there are another two setsof data. The full-wave
SDA data of Fig.2(a) are in solid lines. The computed PI and &
from the data of BPand p~ using the coupled-mode theory are in
dot lines. The data represented by dot lines agree excellently with
those by the solid lines in the entire spectrum of Fig.4,

In summaty, one may model the kinetic formation of the
complex modes in a nonreciprocal finline to such an extent that
the full-wave modal solutions in the neighborhood of the complex
modes can be accurately predicted by applying the catpled-mode
theory on the two hypothetical uncoupled modes. For the particu-
lar case study, these two hypothetical uncoupled modes can be
found numerically from the full-wave modal solutions.
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Conclusion References

The complex modes pose several unique properties to the

full-wave SDA modal solutions of a shielded Iosslesanonrecipro-
cal finline. There are noevaneseent modes found in the particular

case studies of the nonreciprocal finline. Instead, the complex
modes replaee the regions that would have the evanescent modes.

These complex modes occur in complex-cmjugate pairs, which

are formed bya pair of a forward wave and a backward wave. The

occurrence of the complex modes starts at a frequeney point

where the group veloeity is zero.

The kinetic formation of the complex modes in the nonre-

ciprocal ftnline can be described by the cmpled-mode theory both

qualitatively and quantitatively. The coupled-mode theo~ ex-

plains why noevaneseent modes are found in the full-wave modal

solutions for the particular finline. It manifests the fact that the

complex modes ean be establish by two eontradirectional modes

when the propagation constants of those two modes are nearly

equal. Both the full-wave dispersion data and the prcdictcd modal

solutions based on the coupled-mode theory are in exeellent

agreement in the neighborhood of the complex modes region, in

which there are the propagating forward wave, the propagating

backward wave, and the complex waves. Sirtee the coupled-mode

theory model these modes accurately, the myth of the complex

modes in the shielded lossless nonreciproml finline is uncovered.
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Fig.4 The comparison of the finline dispersion characteristic using

the data predicted by the coupled-mode theory and those obtained by

the full-wave SDA. The coupled-mode theo~ models the forward

wave, the backward wave, and the complex modes accurately.
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